Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [Salix viminalis (L.)].

Identifieur interne : 000488 ( Main/Exploration ); précédent : 000487; suivant : 000489

Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [Salix viminalis (L.)].

Auteurs : Henrik R. Hallingb Ck [Suède] ; Sofia Berlin [Suède] ; Nils-Erik Nordh [Suède] ; Martin Weih [Suède] ; Ann-Christin Rönnberg-W Stljung [Suède]

Source :

RBID : pubmed:31249579

Abstract

The short rotation biomass crop willow (Salix genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291 Salix viminalis accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of Salix breeding.

DOI: 10.3389/fpls.2019.00753
PubMed: 31249579
PubMed Central: PMC6582754


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [
<i>Salix viminalis</i>
(L.)].</title>
<author>
<name sortKey="Hallingb Ck, Henrik R" sort="Hallingb Ck, Henrik R" uniqKey="Hallingb Ck H" first="Henrik R" last="Hallingb Ck">Henrik R. Hallingb Ck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nordh, Nils Erik" sort="Nordh, Nils Erik" uniqKey="Nordh N" first="Nils-Erik" last="Nordh">Nils-Erik Nordh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann-Christin" last="Rönnberg-W Stljung">Ann-Christin Rönnberg-W Stljung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31249579</idno>
<idno type="pmid">31249579</idno>
<idno type="doi">10.3389/fpls.2019.00753</idno>
<idno type="pmc">PMC6582754</idno>
<idno type="wicri:Area/Main/Corpus">000426</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000426</idno>
<idno type="wicri:Area/Main/Curation">000426</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000426</idno>
<idno type="wicri:Area/Main/Exploration">000426</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [
<i>Salix viminalis</i>
(L.)].</title>
<author>
<name sortKey="Hallingb Ck, Henrik R" sort="Hallingb Ck, Henrik R" uniqKey="Hallingb Ck H" first="Henrik R" last="Hallingb Ck">Henrik R. Hallingb Ck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nordh, Nils Erik" sort="Nordh, Nils Erik" uniqKey="Nordh N" first="Nils-Erik" last="Nordh">Nils-Erik Nordh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann-Christin" last="Rönnberg-W Stljung">Ann-Christin Rönnberg-W Stljung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The short rotation biomass crop willow (
<i>Salix</i>
genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291
<i>Salix viminalis</i>
accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of
<i>Salix</i>
breeding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31249579</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [
<i>Salix viminalis</i>
(L.)].</ArticleTitle>
<Pagination>
<MedlinePgn>753</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00753</ELocationID>
<Abstract>
<AbstractText>The short rotation biomass crop willow (
<i>Salix</i>
genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291
<i>Salix viminalis</i>
accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of
<i>Salix</i>
breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hallingbäck</LastName>
<ForeName>Henrik R</ForeName>
<Initials>HR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berlin</LastName>
<ForeName>Sofia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nordh</LastName>
<ForeName>Nils-Erik</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weih</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rönnberg-Wästljung</LastName>
<ForeName>Ann-Christin</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GWAS</Keyword>
<Keyword MajorTopicYN="N">SRC willows</Keyword>
<Keyword MajorTopicYN="N">Salix viminalis L.</Keyword>
<Keyword MajorTopicYN="N">association mapping</Keyword>
<Keyword MajorTopicYN="N">biomass</Keyword>
<Keyword MajorTopicYN="N">marker-assisted selection</Keyword>
<Keyword MajorTopicYN="N">phenology</Keyword>
<Keyword MajorTopicYN="N">plasticity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31249579</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00753</ArticleId>
<ArticleId IdType="pmc">PMC6582754</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):2079-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Dec;165(4):2259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):113-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Genet. 2008;49(4):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Feb 26;9:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Dec;29(12):1479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Feb 26;6(2):e1000862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Dec;25(12):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12):684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Feb;53(2):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 May 12;366(1569):1368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Oct 28;12(10):232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22035733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2011 Oct;1(5):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Apr 03;12:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4045-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jun 17;44(7):825-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Mar;22(5):1214-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2012 Dec 7;91(6):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23217325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Nov;14(11):807-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Jan 17;14:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24438179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Jun;19(6):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 28;9(2):e90346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Sep;19(9):592-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24970707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2015 Feb;22(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Feb;199(2):379-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Sep 15;5(11):2383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26377960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Feb;209(3):1067-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26499329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Jan;21(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26541073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2016 May;8(3):670-685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27547245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27596807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Mar 23;18(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Jul 1;120(1):87-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28449073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 May;39(3):505-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Aug;52(4):967-977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2018 Dec;293(6):1437-1452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 22;9:1693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30524463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2019 Apr 22;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31008500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1974 Oct;33(2):229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4531429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Hallingb Ck, Henrik R" sort="Hallingb Ck, Henrik R" uniqKey="Hallingb Ck H" first="Henrik R" last="Hallingb Ck">Henrik R. Hallingb Ck</name>
</noRegion>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<name sortKey="Nordh, Nils Erik" sort="Nordh, Nils Erik" uniqKey="Nordh N" first="Nils-Erik" last="Nordh">Nils-Erik Nordh</name>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann-Christin" last="Rönnberg-W Stljung">Ann-Christin Rönnberg-W Stljung</name>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31249579
   |texte=   Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [Salix viminalis (L.)].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31249579" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020